

Aqeel Aoro

Project Overview

The Lotus 2.0 is a partially autonomous rover that will roam Salton Sea to take data measurements using a number of sensors, including temperature, humidity, and object detection. The user will have control over the rover's target destinations while the rover takes measurements as it locates to the desired destination. It will be battery-powered, which will be charged through a solar panel. The user will also be able to monitor the rover's power consumption to make the best use of its runtime before it has to charge up.

Back View

Microcontroller (Arduino) Central system that manages the rover's mobility, radio communication, power, and sensors

LoRa (Transceiver) Sends and receives sensor data (i.e. Temperature, Humidity, GPS) with a range up to 10km+

915 MHz Microstrip Antenna Low profile Microstrip antenna designed to resonate at 915 MHz for USA LoRa Modules and wireless networks

Lotus 2.0 Kaladesh

Raymar Asanas | Duraid Gorgies | Ferdinand Mateo | Mark Bryan Navarro | Joncy Raya | Rasha Shaaya

Hardware / Key Components

GPS & Compass Primary navigation modules guide rover to the user's desired destination

Lotus 2.0

Raspberry Pi Camera

Object detection system that identifies wildlife

Ultrasonic Sensor Operates in tandem with navigation modules to navigate around obstructing objects and structures

Temperature & Humidity Sensor Manages system's mobility, radio com- munication, power, and sensors

Battery and Solar Panel

Primary power source, which can be recharged when needed using solar engergy

Power Accumalator

Central power monitoring system that measures the power consumed by each component to ensure maximum power optimization